Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Biomedical Engineering ; (6): 67-72, 2015.
Article in Chinese | WPRIM | ID: wpr-266725

ABSTRACT

Based on the surgical model using transforaminal lumbar interbody fusion (TLIF) to treat lumbar spondylolisthesis, this paper presents the investigations of the biomechanical characteristics of cage and pedicle screw in lumbar spinal fusion implant fixed system under different combinations with finite element method. Firstly, combining the CT images with finite element pretreatment software, we established three dimensional nonlinear finite element model of human lumbar L4-L5 segmental slight slippage and implant under different fixed combinations. We then made a comparison analysis between the biomechanical characteristics of lumbar motion range, stress distribution of cage and pedicle screw under six status of each model which were flexion, extension, left lateral bending, right lateral bending, left axial rotation and right axial rotation. The results showed that the motion ranges of this model under different operations were reduced above 84% compared with those of the intact model, and the stability of the former was improved significantly. The stress values of cage and pedicle screw were relatively larger when they were fixed by single fusion device additional unilateral pedicle screw, but there was no statistically significant difference. The above research results would provide reference and confirmation for further biomechanics research of TLIF extracorporal specimens, and finally provide biomechanical basis for the feasibility of unilateral internal fixed diagonal intervertebral fusion TLIF surgery.


Subject(s)
Humans , Biomechanical Phenomena , Finite Element Analysis , Lumbar Vertebrae , Models, Anatomic , Motion , Pedicle Screws , Posture , Range of Motion, Articular , Rotation , Spinal Fusion
2.
Journal of Biomedical Engineering ; (6): 612-618, 2014.
Article in Chinese | WPRIM | ID: wpr-290705

ABSTRACT

In the present study, a finite element model of L4-5 lumbar motion segment was established based on the CT images and a combination with image processing software, and the analysis of lumbar biomechanical characteristics was conducted on the proposed model according to different cases of flexion, extension, lateral bending and axial rotation. Firstly, the CT images of lumbar segment L4 to L5 from a healthy volunteer were selected for a three dimensional model establishment which was consisted of cortical bone, cancellous bone, posterior structure, annulus, nucleus pulposus, cartilage endplate, ligament and facet joint. The biomechanical analysis was then conducted according to different cases of flexion, extension, lateral bending and axial rotation. The results showed that the established finite element model of L4-5 lumbar segment was realistic and effective. The axial displacement of the proposed model was 0.23, 0.47, 0.76 and 1.02 mm, respectively under the pressure of 500, 1 000, 1 500 and 2 000 N, which was similar to the previous studies in vitro experiments and finite element analysis of other people under the same condition. The stress distribution of the lumbar spine and intervertebral disc accorded with the biomechanical properties of the lumbar spine under various conditions. The established finite element model has been proved to be effective in simulating the biomechanical properties of lumbar spine, and therefore laid a good foundation for the research of the implants of biomechanical properties of lumbar spine.


Subject(s)
Humans , Biomechanical Phenomena , Finite Element Analysis , Intervertebral Disc , Lumbar Vertebrae , Models, Anatomic , Pressure , Prostheses and Implants , Range of Motion, Articular , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL